Kwabena Boahen (M’89, SM’13, F’16) received the B.S. and M.S.E. degrees in electrical and computer engineering from the Johns Hopkins University, Baltimore, MD, both in 1989 and the Ph.D. degree in computation and neural systems from the California Institute of Technology, Pasadena, in 1997. He was on the bioengineering faculty of the University of Pennsylvania from 1997 to 2005, where he held the first Skirkanich Term Junior Chair. He is presently Professor of Bioengineering and Electrical Engineering at Stanford University, with a courtesy appointment Computer Science. He is also a member of Stanford’s Bio-X and Wu Tsai Neurosciences Institutes. He founded Stanford’s Brains in Silicon lab, which develops silicon integrated circuits that emulate the way neurons compute and computational models that link biophysical neuronal mechanisms to cognitive behavior. His research is interdisciplinary, bringing together the seemingly disparate fields of neurobiology and medicine with electronics and computer science. His scholarship is widely recognized, with over ninety publications to his name. These include a cover story in Scientific American featuring his group’s work on a silicon retina and a silicon tectum correctly “wire together” automatically. (May 2005). He has been invited to give over 80 seminar, plenary, and keynote talks. These include a 2007 TED talk, “A computer that works like the brain”, that has been viewed half-a-million times. He has received several distinguished honors, including a Packard Fellowship for Science and Engineering (1999) and a National Institutes of Health Director’s Pioneer Award (2006). He was elected a fellow of the American Institute for Medical and Biological Engineering (2016) and of the Institute of Electrical and Electronic Engineers (2016). In recognition of his group’s work on Neurogrid (2006-12), an iPad-size platform that emulates the cortex in biophysical detail and at functional scale. As this combination hitherto required a supercomputer, Neurogrid resurged interest in neuromorphic computing. These students went on to lead the design of IBM’s TrueNorth chip. In his most recent research effort, the Brainstorm Project, he led a multi-university, multi-investigator team to co-design hardware and software that makes neuromorphic computing much easier to apply. A spin-out from his Stanford group, Femtosense Inc (2018), is commercializing this breakthrough.
This person is not in the org chart